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Moduli Stabilization in Warped Compactifications
at One Loop
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We review the moduli stabilization mechanism found in Garrgaal. (Garriga, J.,
Pujolas, O., and Tanaka, T. (200®reprint hep-th/0111277.) for a class of five-
dimensional warped brane-world scenarios. Specifically, we consider solutions with
a power-law warp factor and a bulk dilaton with logarithmic profile in terms of the
proper distance in the extra dimension. This includes the Heterotic M-theory brane-
world of Lukaset al. (Lukas, A., Ovrut, B. A., Stelle, K. S., and Waldram, D. (1999).
Physical Review 39, 086001.) and Khourgt al.(Khoury, J., Ovrut, B. A., Steinhardt,

P. J., and Turok, N. (2001Preprinthep-th/0103239.) and the Randall-Sundrum (RS)
model as a limiting case. In general, there are two moduli figldscorresponding

to the “positions” of two branes. Classically, the moduli are massless due to a scaling
symmetry of the action. However, in the absence of supersymmetry, they develop an
effective potential at one loop. Local terms proportional to some powers of the local
curvature scale at the location of the corresponding brane are needed in order to remove
the divergences in the effective potential. Such terms break the scaling symmetry and
therefore act as stabilizers for the moduli. Moreovergfrl0, the observed hierarchy

can be naturally generated by this potential, and the lightest modulus mass is of order
m_<TeV.

KEY WORDS: casimir energy; brane world; warped compactifications.

1. INTRODUCTION

Spacetimes with extra dimensions and a number of branes have recently been
considered in order to construct phenomenologically interesting models of Nature
(Antoniadiset al,, 1998; Arkani-Hameet al,, 1998, 1999; Randall and Sundrum,
1999). From the four-dimensional point of view, the parameters describing the
possible shape of the higher dimensional geometry, such as the distances between
branesinthe generically correspond to four-dimensional scalar fielodectively
called moduli. The moduli may be massless at the classical level but in the absence
of supersymmetry they tend to develop an effective potential at one loop. This
happens already in the simplest Kaluza—Klein (KK) compactification, and even
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if there are no branes (Appelquist and Chodos, 1983a,b). In four-dimensional
language, a fielg that lives in the bulk can be split in an infinite tower of massive
KK fields, labeled by a discrete indexThe masses of these KK excitationg(¢)
depend on the modu. Since, e.g., in Minkowski spacetime, a massive scalar
induces a potential proportional ta,(¢)*, a KK tower generates an effective
potentialV (¢) at one loop.

In most brane-world compactifications, the self-gravity of brane and bulk
matter content induce a warp in the extra dimension. In this situation divergences
proportional to world-volume operators on the brane are generated, so the subtrac-
tion of infinities inV (¢) is not as simple as it is in flat space. As we will see, this
gives rise to new interesting effects.

The effective potential in the Randall-Sundrum model (RS) (Randall and
Sundrum, 1999) was computed in reference (Gaetgd., 2000) using zeta func-
tion regularization. A somewhat unexpected feature of the result is the absence of
logarithmic terms in the effective potential, which in turn results in a very small
correction for the mass of the radion in the limit of large hierarchy. Several papers
have recently appeared in the literature (Bregtkal, 2000; Flachi and Toms,
2001; Goldberger and Rothstein, 2000; Nogtial, 2000; Toms, 2000) where
the effective potential is obtained in dimensional regularization through certain
subtractions corresponding to renormalization of the brane tensions in the dimen-
sionally extended spacetime. The agreement between the results indicates that both
procedures are in fact equivalent. However, the RS model is specially simple in that
it is built from AdS space (which is maximally symmetric). So all counterterms
that one can construct from the geometry are proportional to the volume of the
bulk or to the “area” of the branes.

Here we consider a class of warped brane-world models with a nontrivial
bulk scalar and a power-law warp factor as the background-field configuration, in
which the bulk is no longer AdS. In Garrigdal.(2001), the equivalence between
dimensional and zeta function regularization for these models was shown for the
computation of the effective potentigl(¢). In what follows, | shall review the
computation ofV (p) in these cases. We shall note that the class of background
configurations we consider includes the Heterotic M-theory brane-world of Lukas
et al. (1999), which may perhaps be relevant for the recently proposed Ekpyrotic
universe scenario (Khourgt al, 2001) as well as the RS model as a limiting
case. The result we find can be split into two parts: a nonlocal contribution, which
we may identify as the Casimir energy generated by the bulk fielglus a
number of induced local operators on the brane, which in turn depend on the local
curvature atthe place where the brane sits. These terms are needed in order to absorb
the divergencies in the potential. They are absent in flat spacetime and, although
present, they are irrelevent in the RS model. However, in the cases considered here,
they provide a natural mechanism for stabilizing the moduli, giving them sizeable
masses.
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The plan of the paper is the following. In Section 2 we present the background
model. In Section 3 we discuss some aspects of the regularization procedure and
in Section 4 we explicitly comput¥ (¢) induced by nonminimally coupled fields
using dimensional regularization. The origin of the (gravitational) hierarchy is
reviewed in Section 5, and the mechanism for stabilizing the moduli is outlined in
Section 6. Our conclusions are summarized in Section 7. The following discussion
is based on recent work in collaboration with Garrggal. (2001).

2. THE MODEL

Let us consider a five-dimensional system composed of a scalatpfizid-
pled to gravity. The fifth dimension is compactified orZga orbifold with two
branes at the fixed points of th® symmetry. The scalar field potential takes an
exponential form in the five-dimensional bulk, with similar terms localized on the
brane. The action for the background fields is given by

§=—" f d5X«/—_g<R + Loy + Ae°¢)
K5 2

—(fjgfd“xa/—QJr /2 _o_ /d“x«/—g_ e/2, (2.1)

whereR is the curvature scalats = 167 Gs, whereGs is the five-dimensional
gravitational coupling constant. We have denoted the induced metrics on the pos-
itive and negative tension branes @yv andg,,, respectively. To find a solution

of the equations of motion, we make an ansatz where the four-dimensional metric
is flat,

ds® = dy? + a(y)n,, dx* dx’, (2.2)

with a x*-independent scalar fielfl = ¢o(y). The positive and negative branes
are placed &y = y, andy_, respectively. Under these assumptions, the equations
of mation for @, ¢) in the bulk become

a\? 1 /1.,
(5) =1—2<§¢ —U(¢)),

b+42§=U), 2:3)

whereU (¢) = A€®?, a dot represents differentiation with respecytand a prime
represents differentiation with respectgto

As shown in Youm (2000, 2001), there is a solution of Eq. (2.3) for any value
of c given by

$o = —/6q In(y/yo),
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a(y) = (y/yo)*, (2.4)

q= (2:2, YO=,/M. (2.5)

(Constant rescalings of the warp factor are of course allowed, but unless otherwise
stated, we shall take the convention théf) = 1 aty = yp.) Assumingy_ < y,,

the boundary conditions that follow fro, symmetry imposed on both branes
are given by

where

, c

¢+ = F 0x elcr2)e=, (2.6)
a 1 (¢/2)p+

6 a‘i = 50 €1, 2.7)

and they are satisfied if. are tuned to

48qA
1-4q°

For later reference, we define the conformal coordinates by

y\'
, 2.9
'/a(y) 11— ql( ) @9)
with which the metric is

ds? = a%(2)(dZ + n,, dx* dX’), a(2) = (2/20)", (2.10)

(2.8)

o4+ =

where
q Yo
P=i—q ® i-q
Here we should mention that the direction of increasimpes not coincide with
the direction of increasing whenqg > 1.
In the absence of the branes, the spacetime (2.4) contains a singularity at
y = 0. Of course, since we are considering the range betweeandy,, this
singularity does not cause any problem. Our spacetime consists of two copies of
the slice comprised betwegn andy,, which are glued together at the branes.
Hence, the fifth dimension is topologically &4/ Z, orbifold.
Forg = 1/6, this solution is precisely the Heterotic M-theory model of Lukas
et al.(1999). On the other hand, the RS model, where the bulk is AdS and there is
no scalar field, corresponds to the case Witk co.
For fixed value of the coupling, the solution given above contains only
two physically meaningful free parameters, which are the locations of the branes
y_ andy,. This leads to the existence of the corresponding moduli, which are

(2.11)
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massless scalar fields from the four-dimensional point of view. In addition to these
moduli, the massless sector also contains the graviton zero mode. To account for
it, we generalize our metric ansatz (2.2) by promoting to an arbitrary four-
dimensional metric:

ds® = dy? + a%(y)§,, (x)dx"“dx". (2.12)

For constant values of the metric and moduli, we have a solution of the equations of
motions whose action vanishes. Hence, only the terms that depend on derivatives
of the metric or derivatives of the moduli will survive in the action after the five-
dimensional integration.

The induced metric on the branes is of the form

g, = @[ +ar%9,yedyyL].

Consequently, the induced kinetic terms for the moglulicome from the brane
tensions together with the Hawking—Gibbons boundary terms, and the classical
action for the moduli can be put in the form (Garrigfzal,, 2001)

1 4 =), 2 2\F 6q N2 mN2
Sn = 15 | 8|0 DR - (G - (o)
(2.13)
Here we have introduced
ya )\ 42
Y+r = (g) )
and the four-dimensional Newton’s const&@iven by
1\ Gs
G=|(g+35)—. 2.14
(q 2) Yo (214)

The modulus corresponding to the positive tension brane has a kinetic term with
the “wrong” sign. However, this does not necessarily signal an instability, because
it is written in a Brans—Dicke frame. One can show (Garggal., 2001) that in
the Einstein frame the two moduli have positive definite kinetic terms.

In the RS limitg — oo, one can show (Garriget al., 2001) that the kinetic
term corresponding to the combination of the moduli givemby— @2 disappears.
This is to be expected, because the bulk is the maximally symmetric AdS space,
so only the relative position of the brangs — y_ is physically meaningful and
necessarily one combination of the moduli can be gauged away (see also Barvinsky,
2001, for a recent discussion of this case).

To conclude this section, let us comment on the reason why the moduli should
be massless at the classical level. Under the global transformation

Gab — T?Gap, (2.15)
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¢ —> ¢ —(2/0)InT, (2.16)
the action (2.1) scales by a constant factor
S — T3S,

Heregap is the metric appearing in the action (2.1). Acting on a solution with one
brane, the transformation simply moves the brane to a different location. Hence, all
brane locations are allowed, from which the masslessness of the moduli follows.
However, this is just a global scaling symmetry that, in principle, is not expected
to survive quantum corrections. By means of a conformal transformation (Garriga
etal, 2001), we may “change variables” to a new megéféthat is invariant under

the scaling symmetry

gfg = €“Qap. (2.17)

In this form, the scaling is just due to the shiftgn

3. EFFECTIVE POTENTIAL

In this section we set up the framework for computing the contribution to
the one-loop effective potential from a scalar field propagating in the bulk with a
generic mass term, which may include couplings to the curvature of spacetime as
well as couplings to the background scalar figld'he (Euclidean) action for this
field is given by

1
Sl = 5 [ 4°xv=gxPx, (31)
where we have introduced the covariant operator
P =—(g4 + E).

HereOy is the d’Alembertian operator associated with the meggic andE =
E[Gab, ¢]isageneric “mass”term. Typically, this takes the fdEm= —m? — £ R,
wheremis aconstantmasg is the curvature scalar, agds an arbitrary coupling.
However, in generdt can also depend on any backgroundfields, such as the dilaton
¢. Throughout this section we shall leakainspecified, although later on we shall
restrict attention to the massless ca®e= 0 for explicit calculations.

3.1. Ambiguity in the Definition of the Measure

The effective potentia/ per unit comoving volume parallel to the branes is
defined by

e AV = / Dy e = (detP)~/?, (3.2)
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whereA is the comoving volume under consideration. Equivalently, we may write

1 P
= ﬂTrln( ) (3.3)
where the symbol Tr refers to the uswaltrace. For any operatd?, the trace can
be represented as

O] = Z/de g2 (Od;) = Zde §Y20;(0D;),

whered; (or ;) form an orthonormal basis with respect to the measure associated
with the metricg (or §, respectively). The definition of the trace is rather robust,

in the sense that it is independent on the metric one uses in order to define the
orthonormal basis, as long as the corresponding measures are in thie selass.

This will be the case, for instance, if the metrics are related by a conformal factor
that is bounded above and below on the manifold.

Note that we have made a definite choice of the measure of integration in the
path integral (3.2) when we have identified it with the trace of the logarithm of the
covariant operatoP. With this definition, the result is guaranteed to be covariant
with respect to the metrig. That is, the result will only depend on geometric
invariants constructed from the metgand the scalar functiok.?

However, Eq. (3.3), should not be regarded as the only possible definition
of the measure of integration. As we discussed in Section 2, the action (2.1) is
written in terms of the five-dimensional Einstein frame metgig, but by using
a conformal transformation that depends on the background scalar field one can
constructa metrigfg, which is invariant under the scaling symmetry. Classically,
both metrics provide an equally valid description of spacetime, and in both cases we
can write down generally covariant equations of motion in order to make identical
predictions for physical quantities.

This arbitrariness in the choice of metric raises an ambiguity in the quan-
tum theory because two metrics that differ by a conformal rescaling involving the
scalar field will provide different measures of integration and different results for
the effective potential. In (3.3) we chose covariance with respeagi;tdut other
choices are perfectly possible, or perhaps even preferable. In dimensional regu-
larization, where the dimension of spacetime is extended-a 5the ambiguity
arises when we have to subtract divergences. The divergences are proportional to
¢! times the integral of certain geometric invariants on the brane. The integral
itself depends om, and the dependence is different for different choices of the
“physical metric” out of which we construct the geometric invariants.

2 Also, it may depend on additional scalar functions that are needed in order to specify the boundary
conditions of the field on the brane. For simplicity here we shall restrict attention to the case of
Dirichlet boundary conditions, where these functions are absent.
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Since we have a classical scaling symmetry, a preferred choice for the measure
of integration may be the one associated with the mgﬁﬁﬂc which is invariant
under scaling. However, evenin this case the divergent part of the effective potential
will not respect the scaling symmetry of the action, and consequently we need to
introduce counterterms with the “wrong” scaling behavior. Hence, in what follows,
we shall take the conservative attitude that the measure is determined in the context
of a more fundamental theory (from which our five-dimensional effective action
is derived), and we shall formally consider on equal footing all choices associated
with metrics in the conformal class gf, including of courseg;?,.

3.2. Conformal Transformations and the KK Spectrum

Equation (3.2) relates the one-loop contribution induceg iy the determi-
nant of the operatoP. However, as mentioned in the previous subsection, if we
demand that the measure of integration be covariant with respgﬁ,tdnstead
of gap, then the effective potential is given in terms of a different oper&or
conformally related tdP. The direct evaluation of the determinant Bf or Ps
for that matter, turns out to be rather impractical, due to the complicated form of
the implicit equation that defines their eigenvalues. For actual calculations it is
convenient to work with a conformally related operaBgmwhose eigenvalues will
be related to the KK masses.

Following Garrigaet al.(2000), we introduce a one-parameter family of met-
rics that interpolate between our physical spacetime and a fictitious flat spacetime

b = 5 Gab, (3.4)

where6d parametrizes the path in the space of conformal factorséEei0 the
fictitious metricg’, represents flat space, whereastfes 1 it coincides with the
physical metric (2.10). The actual path in the space of conformal factors will be
unimportant, but for definiteness we shall take

Q(2) = (%)_ﬁ(l_g). (3.5)

For6 = —1/B, the metrigy’,, coincides with the metriggsg introduced in Section 2,
which is invariant under the scaling transformation. As mentioned before, this
metric corresponds to a five-dimensional AdS space, with curvature radius given

by zo.
Further, we define the operatBys associated with the metrg, by

QP 22p, P2 = o 2p. (3.6)
This operator can be written in covariant form as

Py = —(09 + Ey),
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where
Ey = (D — 2)(49Q2) " [292; 1(09)
+(D — 4)g?(3a In Q4)(3 In ) + (4E/(D — 2))],

andc, is the covariant d’Alembertian in the spacetime with medfjc Introducing
xo = Q2 P2y the action for the scalar field can be expressed as

Sl = 5 [ 4xVG 10 P o @.7)
Comparison with (3.1) and the discussion following (3.3) give the expression
1 P,
Vy = 2ATrIn( ) (3.8)

for the effective potential that is obtained from the covariant measure with respect
to the metricgl,,.

Of particular interest i) = Py,—o. This is the wave operator for the KK
modes that one would use in a four-dimensional description. Moreover, it has the
advantadge that its (Euclidean) eigenvaliigs = k,k* + mZ separate as a sum
of a four-dimensional part plus the KK massag. In the following subsection,
we shall discuss how dij is related to the determinant of our interest, Rlet
or more generally to d& using dimensional regularization (we refer the reader
to Garrigaet al,, 2001, for a comparison between dimensional and zeta function
regularizations).

3.3. Dimensional Regularization

A naive reduction to flat four-dimensional space suggests that the effective
potential can be obtained as a sum over the KK tower:

d°k (K2 +mig, D)
=i L5 e (C) 69

Here D = 4+ 1 — ¢ is the dimension of spacetime, and we have added) (
dimensions parallel to the brane. The renormalized effective potential should then
be given by an expression of the form

V(p)=VP -v®, (3.10)

and the question is what to use for the divergent subtraatf®h Since Eq. (3.9)
is similar to an ordinary effective potential in four-dimensional flat sfacage

31t should be mentioned also that each KK contribution in Eq. (3.9) is not just like a flat space
contribution, because in warped compactifications the KK masgés, D) depend on the number
of external dimensions parallel to the brane.
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might imagine thal can be obtained fronv P just by dropping the pole term,
proportional to Ye; but this is not true for warped compactifications. The point is
that the theory is five-dimensional and the spacetime is curved, and this fact must
be taken into account in the process of renormalization.

Rather than proceeding heuristically from (3.10), we shall take the definition
of the effective potential equation (3.8) as our starting point, where it is understood
that the formally divergent trace must be regularized and renormalized. In order to
identify the divergent quantity to be subtracted, we shall use standard heat kernel
expansion techniques. Let us introduce the dimensionally regularized expressions
(Buchbinderet al,, 1992; Elizaldeet al.,, 1994; Hawking, 1977)

D _ P(D)\ _
Vv, = 2ATr In< ) = ﬂ I|m 0s¢o(s, D), (3.11)
where
_ (PP A€ o5 [ o-E2P(D)
Zo(s, D) = Tr( 2 ) F(s) : —£%Tr[e ]. (3.12)

It should be noted that the operafy is positive and therefore the integral is well
behaved at largé.

In order to find out which is the pole divergence in the libit— 5, one
introduces the asymptotic expansion of the trace for séndbeWitt, 1975),

00

Tr[e €]~ 3" Pal (Ry), (3.13)
n=0

WhereanD/2 are the so-called Seeley—De Witt coefficients. fret 5 their explicit

form is known for a wide class of covariant operators, which include®purhey

are finite and can be constructed from geometric invariants integrated over space-
time. Given some specified boundary conditions and the fori, pthe Seeley—

De Witt coefficients can be worked out using the results found, e.g., in Bordag
et al. (1996), Kirsten (1998, 2001), Moss and Dowker (1989), and Vassilevich
(1995). The integral (3.12) is well behaved for laggd-or small, the integral is
convergent for 8 > D, as can be seen from the asymptotic expansion (3.13). In
the end, we have to consider the limit> 0, and so we must keep track of diver-
gences that may arise in this limit. For this purpose, it is convenient to separate
the integral into a smal region, withé < A, and a largeé region withg > A,
whereA is some arbitrary cutoff. Substituting (3.13) into (3.12), we can explicitly
perform the integration in the smdllregion for Z > D. This gives

2s o) AN— D+2s

m
¢ D)~ 29 nZ:;)n—D+23

A
(3.14)
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The second term in curly brackets is perfectly finite for all values 8halytically
continuing and taking the derivative with respecstats = 0 we have

, X 24P -
£'(0,D)~ > T Av2(Py) + finite, (3.15)
n=0

where the lasttermis justtwice the integralin (3.14) evaluated=a0. Introducing
theregulatoe = 5 — D, now we identify the ultravioletdivergentpart\zsf, given

by

i 1
Vit = = 2P (3.16)

The divergence is removed by renormalizing the couplings in front of the invariants
that make up the coefficie|'a$/2. The renormalized effective potential of our
interest is therefore given by

. 1
Vg = |I3IT5 |:V0D + aaﬁD/z(F)g)} (317)

To proceed, we need to calculag’, which in principle requires calculating
a trace that involves the eigenvaluesRf and as mentioned above, these are
not related in any simple way to the KK masses. However, it turns out that the
dimensionally regularize¥,? is independent of when D is not an integer. To
show that this is the case, let us consider the generalized asymptotic expansion
(Branson and Gilkey, 1990; McKean and Singer, 1967),

[ee]

T f(x) e ] ~ S " Pab (f, Py), (3.18)

0

where we have introduced the generalized Seeley—De Witt coeﬁie@%@(@, Ps),
constructed from local geometric operators and from the covariant derivatives of
the (smooth) test functio. Again, explicit expressions for them are known for

n < 5, although they will not be necessary for the present discussion. Note also
thatay),(Py) = ay),(f = 1, Py). The dependence &f° oné can be found using

the proper time representation given by Egs. (3.11) and (3.12). One finds (see
Garrigaet al,, 2001)

2’“23
I'(s)
where fy = 95 In Q4. One may again introduce the regulatorand separate the
integral into a larg€ partwithg > A, whichisfinite and a smal part withe < A

which contains the divergent ultraviolet behavior. Using (3.18), we can integrate
by parts assuming thas2> D. The resulting integrals in the smégllregion can

9y lim 3sZp(s, D) = lim s f d& 20, Tr[ — fge*fz"e], (3.19)
s—0 s—0 0
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be performed explicitly and we have

4S,lL25 = An—D+Zs b o
o) [n_o S 25an/z( fo, Ps) +f|n|te]
(3.20)
As before, the last term just indicates the integral in the Igrgegion. Provided
that D is not an integer, all terms in square brackets remain finite at syatid
so the right-hand side of (3.20) vanishes.
Hence, we find that

9p lim 85Zo(s, D) ~ lim 95
s—0 s—0

3V =0, (D #integer) (3.21)

In particular, this means that the dimensionally regularized determinaR} of
coincides with the dimensionally regularized determinar®Pgfand we have
1 [dP <k2 + m2(¢i, D)

D_ D _ D _ el :
VP =VvP =VvP = ;M > | Gt 2 ) (D = integer)
(3.22)

Finally, from (3.17) and (3.22), we can write the renormalized effective po-
tential in a form which is ready for explicit evaluation,

1 1
“(D-54A

The above equation bears the ambiguity in the choice of integration measure in the
second term in square brackets. Different value give different results. If we
takegap as the preferred metric, then we should @se 1, whereas if we takggsg

as the preferred metric, we should #se- —1/8. It can be proven (see Garriga
et al, 2001) that when we sé = 5 the coefficients,»(P,) is also independent
of 6. Hence, the pole term in the second term in (3.23) is independéhtasf it
should, in order to cancel the poleWP. As we will explicitly see, it is the finite

part of VIV that depends on the choicedf

Viler) = fim | v o2(Pi) | (3.23)

4. EXPLICIT EVALUATION

For simplicity we shall restrict attention to the case of massless fields with
arbitrary coupling to the curvature:

E = —ng,

and with Dirichlet boundary conditions(z..) = 0. Here we shall use the method
of dimensional regularization.
The eigenmodes d®, are given by

A = @R 2, (MnZ) + AgY,(Mn2)).
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The index of the Bessel functions is given by

v(D) = %\/1 —4(D —1)BI(D — 2)B — 2](¢ — &(D)), (4.1)
where
&(D)= ;0.

is the conformal coupling in dimensidd. Imposing the boundary conditions on
both branes, we obtain the equation that defines implicitly the discrete spectrum
of my,

F(Mn) = J,(Man) Y, (Mn) — Y, (M) J,(My) = 0, (4.2)
where we have defined
Z+

My=myz_, n= . (4.3)

In the last section we concluded that the renormalized expression for the effective
potential is

Vilor) = fim, VO~ oSl (P) | @.4)

Consider firstv P, given in Eq. (3.22). Performing the momentum integrations,
we obtain

D _ _L 2\e ZL B ~ _
VO = o ) e T2+ €/ (e — 4), (4.5)
where
fe) =Y ms. (4.6)

This regularized expression for the effective potential is finite when the real part
of e is sufficiently large.

Now the problem reduces to the computatior pivhich can be done in the
same way as in the case discussed in Gaetgad. (2000). Skipping the detailed
derivation, we simply give the final result for the regularized potentfa(Garriga
et al, 2001):

1 1 3 1 /1 1
VD:W“<E+Z—%+Eln(4nu223))ﬂ4+ﬂ4}<Z—4+Z)(4.7)

+ B (iln(z—_)—|—iln<z—+>>+I—K—i—ﬁ
N2 %) 2 & 'z
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o l(xz) Kv(xz>)>
+ dx 1In (1 — + O(e). 4.8
/o L(xz) K, (xz2) (6) (48)
For a scalar field with Dirichlet boundary conditions
_ 1 2 4
Ba = 1—28(13 56v° + 16v7). (4.9)

In order to express the result for bajh> 1 andqg < 1 cases simultaneously, we
have introduced. andz. asthe largest and the smalleszpfandz_, respectively.
The constant coefficient¢ (v), Z, (v) are calculable in principle, although their
precise value is perhaps not very interesting since as we shall see these coefficients
can be reabsorbed by finite renormalization. In Eq. (48xnd g, stand for the
vaules ofg; anddps(D)/d D evaluated aD = 5, respectively.

The next step is to subtract the divergent contribution. For the class of con-
formally flat spacetimes considered here, the Seeley—De Witt coefﬁiﬁ’g(ng)
can be computed for a generic dimensidnso we can expand the second term in
ther.h.s. of Eq. (3.23) as

1 1 D P,) — 1 1 1 1 P 1| z
(D _5)Zas/2( 9) = w[;/ﬂ(z—‘l—kZ) - B /34(? n(z)

Se()Eed) e

whereg is given in Eq. (2.11), and is a constant whose value is not important
since it can be absorbed by redefinitionuofWe can see that the divergent parts
of the two terms in Eq. (3.23) cancel.

After redefinition ofu and addition of finite counterterms proportional to the
invariants present ias >, we can write the finite result (Garriga al., 2001)

Ba(BO + 1) ['n(quL) + |n(M22)]
(4m)2 A

z z
1 [ I, (XZ) K, (X2)
+W/o dxx3|n[1—|v(xz>)KU(Xz<)}, (4.11)

VO(ZH Z,) =

whereu; andu, are renormalization constants.

5. HIERARCHY GENERATION

As already mentioned, we are interested in the possibility that the potential
(4.11) can stbilize the moduli. Especially attractive is the situation when the loca-
tion of the minimum in moduli space corresponds to a large separation between
the mass scale of fields living on the negative tension brane and the effective four-
dimensional Planck mass. It is well known that with an exponential warp factor it
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is easy to generate a large hierarchy (Randall and Sundrum, 1999). In this section
we review how such a hierarchy can appear in the model given by (2.1).
The effective four-dimensional Planck mass in our model is given by

5 2 5 y 29+1
mé = M 1— (= 1
P 142 Y+ |: <y+> :| ' -1

whereM is the five-dimensional Planck mass (see, e.g., Eq. (2.13) and (2.14)),
and, without loss of generality, we have taken= y,. Here, and for the rest of

this section, we shall refer all physical quantities to the measurements of clocks
and rods located on the positive tension brane.

Let us now consider the mass scales of fields that live on the branes. We expect
them to couple not only to the metric, but also to the background scalargield
There are many possible forms for this coupling, but here we shall only consider
those which respect the scaling symmetry ((2.15) and (2.16)). Thus, for a free
scalar field¥ that lives on the negative tension brane, and whose mass parameter
is comparable to the cutoff scale, we may have an action of the form

1 v
S =-5 / g9 F%e)[gD" 9, wd, ¥ + FM2W?]. (5.2)

Here we have introduced a fudge factbito allow for an intrinsic mass that is
slightly lower than the cutoff scale. The functiéi{¢) can be reabsorbed in a re-
definition of W, and thus the relevant warp that determines the hierarchy between
mass scales on the positive and in the negative tension branes is the one corre-
sponding to the metrig®. Then, the fieldV will be perceived from the positive
tension brane as having a mass squared of order

y 29-2
m? ~ fM2<y—> ) (5.3)
+

Thus, there are two different agents that contribute to the hierarchy between
andmy. One is the small warp factoy(/y,)%~! appearing in Eq. (5.3), which
“redshifts” the mass scales of particles on the negative tension brane (except for
g < 1, in which case the particles on the negative tension brane appear to be
heavier than those on the positive tension brane). This generates the hierarchy in
the RS model. The other is the possibly large volume of the internal space, which
may enhance the effective Planck scale with respect to the cutoff scale (see Eq.
(5.1)). This generates the hierarchy in the ADD model (Antoniatlial., 1998;
Arkani-Hamedet al,, 1998, 1999) with large extra dimensions. Considering both
effects, the hierarchly is given by

m? f1—|—2q 1 (y_>2q_2

m2 2 My \y;

h? =
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It is known that without a warp factor, it is not possible to generate the desired
hierarchy from a single extra dimension, since its size would have to be astronom-
ical. An interesting question is what is the minimum value of the expogémat
would be sufficient in order to generate a ratigm, ~ 10-6. The best we can

do is to take the curvature scale, (/q) slightly below the millimeter scale,

(V4 /a)<mp(Tev) ~ mm,
in order to pass the short distance tests on deviations from Newton’s law, and
(y-/@)<M 4,
since for smaller values of the curvature becomes comparable to the cutoff scale
M and the theory cannot be trusted. Substituting in (5.1) we Nalemy(TeV)?
and (/_/y,)<(mp/TeV)~#3, which leads to
4(21 1

m? TeV
10%~ =< f( ) ) (5.4)
mg mp

Hence, a warp factor with exponemt- 5/4 may account for the observed hierar-
chy with a single extra dimension, but it appears that this cannot be done for lower
values ofg.* In particular, the Heterotic M-theory model, with= 1/6, does not
seem to allow for such possibility.

6. STABILIZATION OF MODULI

In general, the effective potential induced by massless bulk fields with arbi-
trary curvature coupling is given by (4.11). In the limit when the branes are very
close to each other, it behaves like (Garggal., 2001)V o a*|y; — y_|~*, which
is of the form of the potential induced by a conformally coupled scalar (Garriga
et al, 2001). It corresponds to the usual Casimir interaction in flat space. Perhaps
more interesting is the moduli dependence due to local operators induced on the
branes, which are the dominant termsM(y., y_) when the branes are widely
separated. Such operators break the scaling symmetry of the classical action dis-
cussed in Section 2, but nevertheless are needed in order to cancel the divergences
in the effective potential.

In this limit of large interbrane separation, the potential (4.11) assumes a
“Coleman—Weinberg” form for each one of the moduli (Garrgal., 2001),

Vo)~ X at fakion[ < sal e

i=+

4Except, of course, by giving up the assumption that the Lagrangian of matter on the branes should
scale in the same way as the rest of the classical action (see the discussion around Eq. (5.2)). If we
allow any coupling ofp to the mass term fo®, then any hierarchy can be easily generated for any
value ofq.
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Here, we have introduced the “curvature scalgly) = q/y, so thatk 4(y;) be-
haves like a generic geometric operator of dimension 4 on the brane (such as the
fourth power of the extrinsic curvature). The constar (6.1) is given by

_(1-0)g-1 “1\4 x)
o=y @A A (6.2)
where we sum over the contributions from all bulk fiejdsThe numerical coef-
ficientsﬁf{‘) are given by Egs. (4.9) and (4.1).

The value ofé depends on the choice of integration measure in the path
integral that defines the effective potential (see Section 3). If we adopt the point
of view that this measure should be covariant with respect to the Einstein frame
metric gap that enters our original action functional (2.1), then we should take
6 = 1. However, this is not the only possible choice. The classical action has a
scaling symmetry that transforms bath, and the background scalar fietdUsing
a conformal transformation that involves the scalar field, we may construct a new
metricgg that does not transform under scaling. If we require that the path integral
measure should be covariant with respect to this new metric, then we should take
6 = 1—1/q. With this particular choice of the coefficienix vanishes and the
logarithmic terms in (6.1) disappear. This seems to indicate that this is a preferred
choice for the measure, since in that case the local terms proportioaéKty
which break the scaling symmetry, can be eliminated (at least at the one-loop
level). Nevertheless, it is far from clear that this is indeed a preferred choice. Here
we take the attitude that the parametds unknown, and that it should be fixed
by a more fundamental theory of which (2.1) is just a low energy limit.

The renormalization constants can be estimated by looking at the “renor-
malized coefficient” of the geometric terms of dimension 4 on the begie) =
a In(K/ui). In the absence of fine-tuning, tlkgdK) are expected to be of order
one near the cutoff scalé ~ M, whereM 2 is basically the five-dimensional
Newton’s constant. Hence, we expect

wi ~ Me G/ (6.3)

wherec; = ¢;(M) ~ 1. In (6.1), we have also allowed for finite renormalization of
local operators on each one of the branes. These operators are collectively denoted
by oi. In order to ensure that the effective potenWatloes not severely distort

the background solution, this correction to the brane tension must be much smaller
than the effective tension of the brane in the classical background solution. From
the Darmois—Israel matching conditions, this effective tension is of dvitfe; .

Hence we require

soi < M3K; « M*, (6.4)

In Section 3 we considered contributions to the effective potential from massless
bulk fields. These may have an arbitrary coupling to the curvature scalar of the
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standard forn€ R x2, or certain couplings to the background dilaton, such as the
couplings occurring in the Heterotic M-theory (see Garggal,, 2001). However,

if the model contains massive bulk fields, of massthen we expect terms pro-
portional tom?K 2 in the effective potential. Even without massive bulk fields, we
may expect the presence of lower dimensional worldsheet operators of the form
M3K, M?K?, andMK?3, due to cubic, quadratic, and linear divergences in the
effective theory. Hence, we may expect tBat has an expansion of the form

80i1(Ki) ~ A} + v M3Ki + 72 M?KZ + s MK+ O(K?),  (6.5)

whereK; < M, Aj <« M, andy;; « 1 in order to satisfy (6.4).

The logarithmic terms may in principle stabilize the moduli at convenient
locations. Note that this effect is due to the warp factor and vanishes in flat space
(where the coefficientg, vanish). The effect also vanishes accidentally in the RS
case, because the curvature s¢é@(g) is constant. The position of the minima are
determined byy, V = 0. This leads to the conditions

o Ki 1 do!
soi = —K? [(1— q)ln (—) + —} + Ki—, (6.6)
‘g i 4 ' 4g
where the prime odo; indicates derivative with respect ;. Also, we must
require that the minima occur at an acceptable value of the effective cosmological
constant. Using the condition (6.6), we can write the value of the potential at the
minimum as

K4 K; \ 409 K;
Vinin = —— (—) {4a In (—) + o+ Ki3aa{} £107"%mg. (6.7)
4q = \Ky i

The latter condition will require one fine-tuning amongst the parameters in (6.5).

An interesting question is whether the effective potential (6.1) can generate
a large hierarchy and at the same time give sizeable masses to the moduli. As
discussed in Section 5, the hierarchy is given by

2 K K 29-2
2= %+ <—+> , 6.8)

- 2
mg M \ K_

wherem ~ TeV is the mass of the particles that live on the negative tension
brane, as perceived by the observers on the positive tension brane. Consistency
with Newton's law at short distances requirgs < (TeV)?/m, ~ (mm)~%, and
consistency of perturbative analysis requikes< M. With these constraints, the
observed hierarchly ~ exp(—37) can only be accomodated fgpr 5/4. To pro-
ceed, we shall distinguish two different cases.

Case aThis is the generic case, where the coefficieatsy»i, andys in the
expansion oBagi(K) are not too suppressed. In this case, the logarithmic terms
in the effective potential are in fact subdominant, and the minima of the effective
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potential are determined bygdo; =~ K;do/. Quite generically, this will lead to
stabilization of the moduli near (or slightly below) the cutoff scile= 1M,
with A; ~ 1. Hence we have

h? ~ exp[2@ — 1) In(r;/A_)].

Since the logarithm is of order one, an acceptable hierarchy can be generated
provided thatj< 10. This is “close” to the RS limifj — oo. In this caseM ~ mj

and the size of the extra dimension is of ormgrl. Onthe positive tension brane the
parameten , has to be fine tuned so that the effective cosmological constant is 122
orders of magnitude smaller than the Planck scale. A straightforward calculation
shows that the physical mass eigenvalues for the maduh the present case are
given by

2

2—24 22
2, K*<h?m

mi ~ g 7?m2KE<mi, m? ~q~*h’m
Thus, the lightest radion has a mass comparable to the TeV scale.

Case b This corresponds to the case where almost all of the operators in
(6.5) are either extremely suppressed or completely absent, due perhaps to some

symmetry. In particular, we shall concentrate on the possibility that
807 = yi M3K;,

since an operator of this form is already present in the classical action (2.1), and it
is the only one in the expansion (6.5), which is allowed by the scaling symmetry.
In this case, and assuming for simplicity that the negative tension brane is near the
cutoff scaleK_ ~ M, we can rewrite (6.7) as

305K4
Vi ~ ot 1){<|n(K+/M+)+ )+h8‘q-1>/<2q-1>(lnu</u)+§)}.

Forq > 1, the first term dominates and the condition of a nearly vanishing cos-
mological constant forcel§, ~ . e 3. A fine-tuning of A will be necessary

in order to satisfy the condition (6.6) for such valuakf. The hierarchy is given

by

29-1
h? ~ <%) ~ exp[-(2q — Datc.], (6.9)
where . is given by (6.3). Since the effective couplingcan be rather small,
a large hierarchy may be obtained even for modegaid. A straightforward

calculation shows that at the minima of the effective potential (65})/ =

120(1+ 29)~%atK{p;? andd2 V ~ aq~*a’ K% % Hence, we find that the
physical masses for the moduh fields andg_ that appear in (2.13) are given by

—2K112/(29-1 —1h2+4/(29-1
m+~aq h /(29 )mp’ m_Naq h+/(q )mp.
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Associated with the eigenvalue, there is a Brans—Dicke (BD) fiekdwith BD
parametewgp = —3q/(1 + 2q). Therefore, we must require, < (mm)~1, which

in turn requiresy > 2. A stronger constraint ogpcomes from the eigenvalus_,

since the corresponding field is coupled to ordinary matter with TeV strength. The
mass of this field cannot be too far below the TeV, otherwise it would have been
seen in accelerators. This requite® be rather largg< 10. So, we see from Eq.
(6.8) that in order to get the observed value for the hieratchgspecting this
bound forces the parameterno be almost of order one, which corresponds to a
large number of fields. Moreover, we find that the cutoff sca is- h¥/(24=Dm,,.

So taking into account this bound, the cutoff is again of the orderofSimilarly

we see that the size of the extra dimension is again of cnqér

7. CONCLUSIONS

We have calculated the one-loop effective potential for the moduli in a class
of warped brane-world compactifications with a power-law warp factor of the form
a(y) = (y/yo)". Herey is the proper distance in the extra dimension. In general,
there are two different modwi,. corresponding to the location of the branes (in the
RS limit,g — oo, a combination of these moduli becomes pure gauge). We have
presented the calculation in dimensional regularization, formalizing and extending
the approach adopted in Flachiand Toms (2001), Goldberger and Rothstein (2000),
and Toms (2000). An important point is that the divergent term to be subtracted
from the dimensionally regularized effective potential is proportional to the the
Seeley—De Witt coefficierds,,. In the RS model, this coefficient behaves much
like a renormalization of the brane tension, but it behaves very differently in the
general case.

The result provides a stabilization mechanism that can be summarized as fol-
lows. The scaling symmetry of the action (2.1) is responsible for the masslessness
of the moduli at the tree level. The effective potential induced by a conformal scalar
field in the bulk is finite because the conformal anomaly vanishes for the back-
ground spacetime topology. For that reason the potential fails to stabilize the moduli
without fine-tunings if a large hierarchy is required. Instead, a nonminimally non-
conformally coupled scalar, generates a divergent potential and local operators are
inevitably generated on the branes. These operators break the scaling symmetry
of the classical action and, subject to suitable renormalization conditions, stabilize
the moduli. For an exponential warp factor (the Randall-Sundrum model), this
does not apply because all these operators are constant. For a sufficiently steep

5Here we are considering the situation where the mass_af much larger than the mass of ,
and where the visible matter is on the negative tension brane. In this casey siaceonst, visible
matter is universally coupled to the metg ]), and the BD parameter correspondingpto can be
read off from (2.13).
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warp factor,g< 10, only one renormalization constant needs to be fine-tuned in
order to obtain a large hierarchy, siezable values for the masses of the moduli and
a sufficiently small cosmological constant. This feature is in common with the
Goldberger and Wise (1999) mechanism for the stabilization of the radion in the
RS model. Fog< 10, the stabilization is also possible, but if we also demand that
the hierarchyh ~ 10~ is generated geometrically, then the resulting masses for
the moduli would be too low. In conclusion, it seems that the anomalous break-
ing of the scaling symmetry of the actfoiis what lies behind this stabilization
mechanism.
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